Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
mBio ; : e0230822, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2097925

ABSTRACT

Coronavirus disease 2019 (COVID-19) is frequently associated with neurological deficits, but how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces these effects remains unclear. Here, we show that astrocytes are readily infected by SARS-CoV-2, but surprisingly, neuropilin-1, not angiotensin-converting enzyme 2 (ACE2), serves as the principal receptor mediating cell entry. Infection is further positively modulated by the two-pore segment channel 2 (TPC2) protein that regulates membrane trafficking and endocytosis. Astrocyte infection produces a pathological response closely resembling reactive astrogliosis characterized by elevated type I interferon (IFN) production, increased inflammation, and the decreased expression of transporters of water, ions, choline, and neurotransmitters. These combined events initiated within astrocytes produce a hostile microenvironment that promotes the dysfunction and death of uninfected bystander neurons. IMPORTANCE SARS-CoV-2 infection primarily targets the lung but may also damage other organs, including the brain, heart, kidney, and intestine. Central nervous system (CNS) pathologies include loss of smell and taste, headache, delirium, acute psychosis, seizures, and stroke. Pathological loss of gray matter occurs in SARS-CoV-2 infection, but it is unclear whether this is due to direct viral infection, indirect effects associated with systemic inflammation, or both. Here, we used induced pluripotent stem cell (iPSC)-derived brain organoids and primary human astrocytes from the cerebral cortex to study direct SARS-CoV-2 infection. Our findings support a model where SARS-CoV-2 infection of astrocytes produces a panoply of changes in the expression of genes regulating innate immune signaling and inflammatory responses. The deregulation of these genes in astrocytes produces a microenvironment within the CNS that ultimately disrupts normal neuron function, promoting neuronal cell death and CNS deficits.

2.
Elife ; 92020 05 12.
Article in English | MEDLINE | ID: covidwho-245716

ABSTRACT

Platelets are anucleate cells in blood whose principal function is to stop bleeding by forming aggregates for hemostatic reactions. In addition to their participation in physiological hemostasis, platelet aggregates are also involved in pathological thrombosis and play an important role in inflammation, atherosclerosis, and cancer metastasis. The aggregation of platelets is elicited by various agonists, but these platelet aggregates have long been considered indistinguishable and impossible to classify. Here we present an intelligent method for classifying them by agonist type. It is based on a convolutional neural network trained by high-throughput imaging flow cytometry of blood cells to identify and differentiate subtle yet appreciable morphological features of platelet aggregates activated by different types of agonists. The method is a powerful tool for studying the underlying mechanism of platelet aggregation and is expected to open a window on an entirely new class of clinical diagnostics, pharmacometrics, and therapeutics.


Platelets are small cells in the blood that primarily help stop bleeding after an injury by sticking together with other blood cells to form a clot that seals the broken blood vessel. Blood clots, however, can sometimes cause harm. For example, if a clot blocks the blood flow to the heart or the brain, it can result in a heart attack or stroke, respectively. Blood clots have also been linked to harmful inflammation and the spread of cancer, and there are now preliminary reports of remarkably high rates of clotting in COVID-19 patients in intensive care units. A variety of chemicals can cause platelets to stick together. It has long been assumed that it would be impossible to tell apart the clots formed by different chemicals (which are also known as agonists). This is largely because these aggregates all look very similar under a microscope, making it incredibly time consuming for someone to look at enough microscopy images to reliably identify the subtle differences between them. However, finding a way to distinguish the different types of platelet aggregates could lead to better ways to diagnose or treat blood vessel-clogging diseases. To make this possible, Zhou, Yasumoto et al. have developed a method called the "intelligent platelet aggregate classifier" or iPAC for short. First, numerous clot-causing chemicals were added to separate samples of platelets taken from healthy human blood. The method then involved using high-throughput techniques to take thousands of images of these samples. Then, a sophisticated computer algorithm called a deep learning model analyzed the resulting image dataset and "learned" to distinguish the chemical causes of the platelet aggregates based on subtle differences in their shapes. Finally, Zhou, Yasumoto et al. verified iPAC method's accuracy using a new set of human platelet samples. The iPAC method may help scientists studying the steps that lead to clot formation. It may also help clinicians distinguish which clot-causing chemical led to a patient's heart attack or stroke. This could help them choose whether aspirin or another anti-platelet drug would be the best treatment. But first more studies are needed to confirm whether this method is a useful tool for drug selection or diagnosis.


Subject(s)
Neural Networks, Computer , Platelet Aggregation , Flow Cytometry , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Platelet Activation , Thrombosis/classification
SELECTION OF CITATIONS
SEARCH DETAIL